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Abstract 

As the world takes steps to move away from fossil fuels, a number of goals have been set to reach 

Net Zero emissions. In this study, artificial neural networks (ANNs) are implemented to project the 

carbon emissions intensity (CEI) of energy use for the top 30 greenhouse gas (GHG) emitting 

countries. A set of development indicators such as population, foreign direct investment and gross 

domestic product were used as inputs to the networks using data from 1980-2014, with the sole 

output of CEI. The study utilised two methods, the first had each country with a dedicated cohort of 

100 ANNs trained exclusively on data from that country. The second method collected countries into 

two groups based on if they were considered Advanced or Emerging by the International Monetary 

Fund (IMF), where each group had a cohort of 100 ANNs and was exposed to data from all countries 

belonging to that group. Cohorts were utilised alongside data augmentation techniques due to 

limited data availability. Quantitative and qualitative data from the Shared Socioeconomic Pathways 

(SSPs) were used to project forwards to 2050 for 5 developmental pathways. 

The individually trained networks had varying accuracy across the countries, with some achieving a 

high R2 (0.97) and some training poorly (-0.04). In contrast, the two IMF grouped networks both 

trained well (0.93 and 0.84 for Advanced and emerging respectively), exhibiting improvements in 

accuracy for the majority of the countries compared to their individual networks. For projections, 

the individual networks had two countries achieving zero CEI (Italy and the Democratic Republic of 

the Congo), however they exhibited a high degree of uncertainty. Within the grouped networks, no 

country reaches a CEI of zero, with France achieving the lowest CEI, closely followed by the 

Democratic Republic of the Congo, and other European countries. SSP1 generally presents good 

opportunities across all countries to lower CEI, however a number of countries perform slightly 

better with SSP4 and SPP5.  

The number of countries failing to achieve a CEI of zero or lower could be explained by the limited 

data availability. As the ANNs also rely in historic data with 2014 being the last year used, they would 

not be able to accurately predict the inclusion of carbon capture and storage (CCS) systems, thus 

representing CO2 emissions created, but not necessarily emitted to the atmosphere. It therefore 

highlights the importance of CCS in limiting GHG emissions, with the likely continued reliance on 

fossil fuels. 

Main Text Word Count: 11,997 

Total Word Count: 19,988 

  



2 
 

Acknowledgements 

Firstly, I would like to thank my supervisor Dr. Chris Brierley, for assisting me in shaping this study, 

providing useful insights, ideas for explorations, and guiding me when I’ve been unsure in my return 

to academia after working for so long, enabling me to pursue my own curiosity whilst ensuring I 

remain focused and on track to succeed academically. 

Secondly, I must thank my partner Nina, who not only has helped me throughout my studies with 

proof reading skills and advice, but for always being there to listen to me, providing love and 

support, and being empathetically enthusiastic whenever I was buried amongst code and solved the 

most mundane problems such as memory leaks or minor optimisation tweaks. 

I would also like to thank my family and friends, for their support and encouragement, as well as my 

manager and work colleagues, who enabled me to return back to academia whilst continuing to 

work part time, and covering for me in my many days of absence. 

 

 

  



3 
 

Contents 

Abstract 1 

Acknowledgements 2 

Figures 5 

Tables 7 

Acronyms 8 

Thesis Outline 9 

1 | Introduction 10 

1.1 Background 10 

1.2 Net Zero Goal 12 

1.3 Machine Learning 14 

1.4 Existing Literature 20 

1.5 Aims and Objectives 21 

2 | Methods 22 

2.1 Context 22 

2.1.1 Selected Indices 22 

2.1.2 Shared Socio-Economic Pathways 29 

2.1.3 Selected Countries and Groupings 31 

2.1.4 SSPs and Projection of Indices 34 

2.2 Modelling 40 

2.2.1 ANN Design 40 

2.2.2 Data and Augmentation Techniques 41 

2.2.3 Fitting the Model 42 

2.2.4 Ensemble Training & Code 43 

3 | Results 44 

3.1 Training 44 

3.1.1 Individual Networks 45 

3.1.2 Grouped Networks 47 

3.1.3 Comparison Between Network Types 47 

3.2 Projections 49 

3.2.1 SSP Projections for Individual Networks 49 

3.2.2 SSP Projections for Grouped Networks 52 

3.2.3 Comparison of Networks 55 

4 | Discussion & Limitations 58 



4 
 

4.1 Discussion 58 

4.1.1 Performance of Individual Networks in comparison to Grouped 58 

4.1.2 Interpretation of SSP Projections 59 

4.1.3 Uncertainty in Projections compared with Historic Coverage 62 

4.1.4 Influence of Missing/Zero Data 63 

4.1.5 Approaches to Grouping Countries 65 

4.1.6 Structure of Networks 65 

4.1.7 Grouped Network Convergence 66 

4.1.8 Comparison with Existing Projections 67 

4.1.9 Extended Projections 70 

4.2 Limitations and Future Work 71 

4.2.1 Limitations of this Study 71 

4.2.2 Future Implications 72 

5 | Conclusion 73 

6 | Auto-Critique 74 

7 | References 75 

 

 

 

  



5 
 

Figures 
 

Figure 1: Measured CO2 concentrations at Mauna Loa Observatory (NOAA, 2021b) .......................... 10 

Figure 2: Radiative climate forcing by greenhouse gases during the last two millennia (NOAA, 2021b)

 .............................................................................................................................................. 11 

Figure 3: Sectoral breakdown of GHG emissions (IPCC, 2014) ............................................................. 11 

Figure 4: The UK Governments energy emissions projections from 2016 and 2017, highlighting an 

almost 25% reduction in 2017 from the projected value (UK Gov, 2017) ........................... 13 

Figure 5: An overview of machine learning methods produced from multiple sources (Mohri et al., 

2018; Goodfellow et al., 2016) ............................................................................................. 15 

Figure 6: A schematic of a perceptron from an ANN (London and Fountas, 2021) ............................. 16 

Figure 7: A schematic of an MLP with one hidden layer (Suhartono et al., 2017) ............................... 16 

Figure 8: A demonstration of the error in training process and validation process, and where the 

fitting of the model is ideal (IBM, 2021) ............................................................................... 19 

Figure 9: An Example of K-Cross Fold Validation, where K=5 and there is N data points (Fedotenkova, 

2016) ..................................................................................................................................... 19 

Figure 10: The Environmental Kuznets Curve with progressive stages (Pettinger, 2019) .................... 23 

Figure 11: Map of Practical PV Potential (PVOUT) (Suri et al., 2020) ................................................... 26 

Figure 12: Global map of gross hydropower potential distribution (Hoes et al., 2017) ....................... 27 

Figure 13: The 5 SSPs and their respective challenges to adaptation and mitigation (O’Neill et al., 

2014; O’Neill et al., 2017) ..................................................................................................... 31 

Figure 14: The selected top 30 largest GHG emitters, 2018 (WRI, 2021) ............................................. 32 

Figure 15: HDI change against HDI Value.............................................................................................. 37 

Figure 16: Example changes in HDI for three different scenarios ........................................................ 37 

Figure 17: The spread of FDI and Trade for all countries with data available in 2014 (WDB, 2021) .... 38 

Figure 18: Extrapolated indices for the UK to 2050, overlaid on historic data ..................................... 39 

Figure 19: The representation of the ANN for individual countries ..................................................... 40 

Figure 20: Demonstration of different interpolation techniques using the Scipy library (Scipy, 2020)

 .............................................................................................................................................. 41 

Figure 21: An overview of the code outputs, where n is a single trained network .............................. 43 

Figure 22: Training of Model 6 for the UK, demonstrating the loss for both training and validation, 

before stopping at epoch 317, and reverting the weights back to epoch 312 .................... 44 

Figure 23: Automatically recorded performance metrics during validation for UK Model 6. The graph 

to the left shows the error spread and count, whilst the graph to the right shows the R2 . 44 

Figure 24: The R2 performance of the individually trained networks per country. Above are the 

Emerging countries, and to the left are the Advanced ........................................................ 45 

Figure 25: The number of epochs required for the individually trained networks per country. Above 

are the Emerging countries, and to the left are the Advanced ............................................ 46 

Figure 26: The R2 performance and epochs required for the Advanced and Emerging networks ....... 47 

Figure 27: The mean 2050 CEI for all SSP scenarios, for the Advanced countries individually trained 

networks. Error bars represent the 95% confidence interval for the mean ........................ 49 

Figure 28: The mean 2050 CEI for all SSP scenarios, for the Emerging countries individually trained 

networks. Error bars represent the 95% confidence interval for the mean ........................ 50 

Figure 29: Projections of UK CEI for the 5 SSPs up to 2050 using the individually trained networks .. 51 

Figure 30: Projections of India's CEI for the 5 SSPs up to 2050 using the individually trained networks

 .............................................................................................................................................. 51 

file:///D:/Ryan/Documents/Education/Masters/Dissertation/04_Documents/01_Dissertation/210806_Dissertation.docx%23_Toc79333947
file:///D:/Ryan/Documents/Education/Masters/Dissertation/04_Documents/01_Dissertation/210806_Dissertation.docx%23_Toc79333947
file:///D:/Ryan/Documents/Education/Masters/Dissertation/04_Documents/01_Dissertation/210806_Dissertation.docx%23_Toc79333948
file:///D:/Ryan/Documents/Education/Masters/Dissertation/04_Documents/01_Dissertation/210806_Dissertation.docx%23_Toc79333948


6 
 

Figure 31: The mean 2050 CEI for all SSP scenarios, for the Advanced countries grouped trained 

networks. Error bars represent the 95% confidence interval for the mean ........................ 52 

Figure 32: The mean 2050 CEI for all SSP scenarios, for the Emerging countries grouped trained 

networks. Error bars represent the 95% confidence interval for the mean ........................ 53 

Figure 33: Projections of UK CEI for the 5 SSPs up to 2050 using the grouped trained networks ....... 54 

Figure 34: Projections of India’s CEI for the 5 SSPs up to 2050 using the grouped trained networks . 54 

Figure 35: The distribution of CEI changes for all SPPs from 2020 to 2050 for the individually trained 

networks ............................................................................................................................... 56 

Figure 36: The distribution of CEI changes for all SPPs from 2020 to 2050 for the grouped trained 

networks ............................................................................................................................... 57 

Figure 37: Historical data for select indices of Venezuela. While energy use per capita has a general 

increasing trend, GDP per capita and CEI are more unpredictable ...................................... 58 

Figure 38: The percentage energy imported of total energy use, and percentage of fossil fuel sources 

used of total energy production for Germany and Italy ...................................................... 60 

Figure 39: Absolute change in CEI with the best performing SSP for each country ............................. 61 

Figure 40: Comparison of the historic UK CEI data, modelled historic data and SSP1 projections. Blue 

represents the min and max across all models, orange is the mean of the cohort, and 

green are the lower and upper bounds of the 95% confidence interval for the mean. 

Dashed grey is historical data used for training. .................................................................. 63 

Figure 41: Plot of the average R2 for each country against the percentage missing data .................... 64 

Figure 42: Different grouping types for the 30 countries, and the associated accuracy of the 

validation .............................................................................................................................. 65 

Figure 43: Performance of different ANN Architecture's prediction accuracy, using R2 as a metric. 

Selected design highlighted in orange.................................................................................. 66 

Figure 44: Projections of CEI values for China, USA, Russia, India and Japan, for all SSPs up to 2100 . 67 

Figure 45: Global projected CO2 emissions per Energy created ........................................................... 68 

Figure 46: Projections for energy usage and carbon intensity for SSP1-3 (van Vuuren et al., 2017) ... 69 

Figure 47: (A) Energy demand projections and contributions from different sources up to 2100 for 

SSP1-5 and 3 RCPs. (B) The percentage contributions from fossil fuels for each scenario 

(shaded boxes represent range of possible scenarios) (Bauer et al., 2017) ........................ 69 

Figure 48: Mean projected CEI for the UK using the grouped network up to 2100 ............................. 70 

Figure 49: Mean projected CEI for India using the grouped network up to 2100 ................................ 71 

 

  

file:///D:/Ryan/Documents/Education/Masters/Dissertation/04_Documents/01_Dissertation/210806_Dissertation.docx%23_Toc79333970
file:///D:/Ryan/Documents/Education/Masters/Dissertation/04_Documents/01_Dissertation/210806_Dissertation.docx%23_Toc79333970
file:///D:/Ryan/Documents/Education/Masters/Dissertation/04_Documents/01_Dissertation/210806_Dissertation.docx%23_Toc79333970


7 
 

Tables 
 

Table 1: The status of net zero targets across countries by their target date, and the maturity of their 

commitment. Created using data (Energy & Climate Intelligence Unit, 2021) based on 

currently declared commitments ............................................................................................ 12 

Table 2: A comparison of typical activation functions .......................................................................... 17 

Table 3: An overview of the selected variables for training in the ANNs ............................................. 28 

Table 4: Categorisation of the top 30 emitters (UN, 2020; IMF, 2021). Countries highlighted in orange 

have differing statuses between the institutions: considered developed by the UN, but still 

emerging by the IMF................................................................................................................ 34 

Table 5: How the SSPs affect various socio-economic development indicators (O’Neill et al., 2017) . 36 

Table 6: The interpretations for the selected parameters based on the narratives. Cells in grey either 

remain constant or have data provided, so extrapolation is not necessary. LIC, MIC and HIC 

refer to low-income, medium-income and high-income respectively .................................... 36 

Table 7: The training results for the individual country networks, and the grouped networks for R2 

and epochs required. The countries individual scores are colour coded based on their values 

with respect to the group networks e.g. green indicates the individual networks have a 

better R2 or required fewer epochs compared to the grouped value..................................... 48 

Table 8: The absolute value change in CEI from 2020 to 2050 for all countries, SSPs and network 

types. Colour scale used shows magnitude of change ............................................................ 55 

Table 9: Countries with missing data, the % missing and R2 value (rounded to 2 d.p.) for the trained 

networks using the original dataset, and the filled dataset. Change in R2 from before and 

after interpolation is colour coded where green is improvement and red represents 

diminishment of accuracy. ...................................................................................................... 64 

 

  



8 
 

Acronyms 
 

ANN – Artificial Neural Networks 

ASCE - American Society of Civil Engineers 

BECCS – Bioenergy with carbon capture and 

storage 

CCS – Carbon Capture and Storage 

CEI – Carbon Emissions Intensity 

CMIP - Coupled Model Intercomparison 

Project 

EKC -Environmental Kuznets Curve 

FDI – Foreign Direct Investment 

GDP – Gross Domestic Product 

GHG – Greenhouse Gas 

GNI – Gross National Income 

HDI – Human Development Index 

IEA – International Energy Agency 

IMF – International Monetary Fund 

IPCC - Intergovernmental Panel on Climate 

Change 

MLP – Multi Layer Perceptron  

MSE – Mean Square Error 

NOAA - National Oceanic and Atmospheric 

Administration 

PPP – Purchasing Power Parity 

PV - Photovoltaic 

R&D – Research and Development 

SSP – Shared Socioeconomic Pathways 

UNDP – United Nationals Development 

Programme 

UNFCC – United Nations Framework 

Convention on Climate Change 

WDB – World Data Bank 

WESP – World Economic Situation and 

Prospects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



9 
 

Thesis Outline 
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to this study. 
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their impacts on the selected inputs. 
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shown, with accuracy measured through R2 of predicted vs actual results. 
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An overview of the results, as well as supplementary analysis to provide context on the modelling 
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Chapter 5: Conclusion  
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1 | Introduction 

1.1  Background 

As the world developed following the industrial revolution, fossil fuels became the primary source of 

energy, resulting in an abundance of greenhouse gas (GHG) emissions to the atmosphere. The 

effects of these emissions are widely accepted to be both directly and indirectly changing our 

climate, and are contributing towards a global average temperature increase (IPCC, 2021).  

GHG are a group of gases that contribute to a warming climate and the greenhouse effect. The most 

abundant GHG in the atmosphere is CO2, which has recently peaked (Figure 1) at 420ppm at the 

Mauna Loa observatory in June (NOAA, 2021). 

 

 

Figure 1: Measured CO2 concentrations at Mauna Loa Observatory (NOAA, 2021) 

 

Carbon dioxide is seen as the most dominant GHG in its contribution to global temperature increase 

through radiative forcing (Figure 2), in part due to the volume of CO2 emitted into the atmosphere 

(NOAA, 2021). 
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Figure 2: Radiative climate forcing by greenhouse gases during the last two millennia (NOAA, 2021) 

 

There are a range of sources for GHGs, with the energy industry typically dominating overall 

emissions, followed closely by transport and industry, and the remainder falling into buildings, 

agriculture and other industries (Figure 3). 

 

 

Figure 3: Sectoral breakdown of GHG emissions (IPCC, 2014) 

 

With human caused global surface temperature increase estimated at 1.07oC (IPCC, 2021), a 

concerted effort is required to reduce ongoing GHG emissions and limit global temperature rise to 

1.5oC. There are many predicted consequences if global temperature rise is allowed to exceed this 

threshold including: sea level rise, increasingly frequent extreme weather events and increased 

species loss (IPCC, 2017). 
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1.2  Net Zero Goal 

In order to reach these goals, the Paris Agreement was signed in December 2015, aiming to hold 

“the increase in the global average temperature to well below 2°c above pre-industrial levels and to 

pursue efforts to limit the temperature increase to 1.5°c above pre-industrial levels” (UNFCCC, 

2015). This global agreement included Nationally Determined Contributions (NDCs) from each 

country, an outline of their intentions to address climate change (UNFCCC, 2015). The NDCs targeted 

emissions reductions, but their magnitude varied between countries due to each country’s individual 

commitments and limitations (Rogelj et al., 2016). Some NDCs included targets of reaching “Net 

Zero” towards the latter half of the century (Tanaka and O’Neill, 2018). 

The term “Net Zero” predates the Paris Agreement, and includes references to building energy 

performance (Mertz et al., 2007; Torcellini et al., 2010; Sartori et al., 2012) as well as direct GHG 

emissions at differing scales (Kilkis, 2007; Deutch, 2020; Smith, 2021). At a national scale, countries 

have ambitions to become “Net Zero Carbon” through reducing their total GHG emissions, and using 

offsets to be able to balance any remaining emissions to zero. Countries vary in their ambition (how 

soon they intend to reach net zero) as well as the maturity of their intent (in the form of legislation). 

Table 1 presents a summary of the current state of declarations made by a total of 132 countries.  

 

  
Target Date 

 

  Achieved 2030 2035 2040 2045 2050 2060 Total 

St
at

u
s 

o
f 

Le
gi

sl
at

io
n

 

Achieved 2 0 0 0 0 0 0 2 

In Law 0 0 0 0 1 5 0 6 

In Policy Document 0 0 1 2 1 14 2 20 

Proposed Legislation 0 0 0 0 0 6 0 6 

Target Under Discussion 0 1 0 0 0 97 0 98 

  Total 2 1 1 2 2 122 2 132 

 

Table 1: The status of net zero targets across countries by their target date, and the maturity of their commitment. Created 
using data (Energy & Climate Intelligence Unit, 2021) based on currently declared commitments 
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So far, Suriname and Bhutan have achieved Net Zero emissions, with the latter being carbon-

negative (Energy & Climate Intelligence Unit, 2021). Over 90% of countries have 2050 as their goal to 

reach Net Zero, however 73% of all countries with a declaration have their goal still under 

discussion. Although there are still three decades until that target, it introduces uncertainty in how 

successful the world will be in reaching their commitments. 

Figure 4 demonstrates the challenges in the projected pathways to net zero, highlighting almost a 

25% difference between the projected and actual value in 2017 for the emissions intensity of 

electricity production in the UK (UK Gov, 2017). These estimates are derived through a Dynamic 

Dispatch Model, taking into account various inputs from the power market such as electricity 

demand, price and supply. It is also capable of forward projections based on the energy market, 

however doesn’t take into account other variables such as how renewables are becoming more 

accessible, which is the suggested cause of the discrepancy shown below. 

 

 

Figure 4: The UK Governments energy emissions projections from 2016 and 2017, highlighting an almost 25% reduction in 
2017 from the projected value (UK Gov, 2017) 

 

Carbon Emissions Intensity (CEI) will be the focus of this study: a measure of the volume of carbon 

dioxide emissions produced per unit of energy consumed. Although countries will have the goal of 

transitioning to Net Zero, it is likely that fossil fuels will still be used in a range of industries beyond 

just the energy sector (Bauer et al., 2017; van Vuuren et al., 2017). Understanding the pathway of 

CEI development is therefore crucial to gauge the implications for total GHG emissions. A novel 

route to modelling this is through machine learning, which has found success in creating accurate 

models (Acheampong and Boateng, 2019; Leerbeck et al., 2020). These studies, along with others 
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investigating machine learning (Sbia et al., 2014; Shahbaz et al., 2017a) have used key development 

indicators as inputs into the algorithms chosen. Some are similar to those found in the Kaya identity 

(Mavromatidis et al., 2016; Raupach et al., 2007) such as GDP and population, but include others 

such as foreign direct investment or industrialisation. 

 

1.3  Machine Learning 

Machine learning is the process by which “computational methods are defined using experience to 

improve performance or to make accurate predictions” (Mohri et al., 2018). There is a reliance on 

historical data for machine learning to be successful as algorithms need sufficient training in order to 

provide accurate predictions.  

In recent years, the use of machine learning as a modelling technique has become more popular. 

This is primarily driven by the increasing abundance of data, the sophistication of learning 

algorithms, and greater computational power. The algorithms used within machine learning can 

typically be categorised into six groups based on the type of problem:  

• Regression: the prediction of a specific value(s) 

• Classification: assigning categories to items 

• Ranking: ordering items based on set parameters 

• Clustering: grouping items based on common criteria 

• Decision Making: learning behaviour of an agent in a specific environment 

• Dimensionality Reduction: transforming the complexity of an item while preserving key 

identifying characteristics 

There are a number of core learning methods: supervised learning, unsupervised learning and 

reinforcement learning (Mohri et al., 2018). Supervised learning requires sets of data that are clearly 

organised and labelled. The machine learning algorithms then learn the associations between the 

defined inputs, and can then take new inputs to make predictions on unseen outputs. Unsupervised 

learning takes unlabelled training data and attempts to recognise patterns or groupings in the data 

automatically. Finally, reinforcement learning places an agent in an environment where it is 

rewarded based on behaviour. The absence or presence of a reward will then train the agent to 

learn the desired interactions. An overview of some of these problems and learning techniques is 

provided in Figure 5, along with example algorithms that can be used, suitable for each problem.  
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Figure 5: An overview of machine learning methods produced from multiple sources (Mohri et al., 2018; Goodfellow et al., 
2016) 

 

Artificial Neural Networks (ANNs) are considered to be quite flexible, as they can be applied to many 

types of problems, although they are not without fault (Dongare et al., 2012). Some pros of ANNs 

include: 

• High flexibility with applications to both classification and regression 

• Prediction speed with a trained network can be quite fast 

• Scales well with large datasets in terms of height (inputs characteristics) and breadth 

(number of records) 

However, there are drawbacks to utilising them too: 

• They operate as “black boxes”, so it’s unclear how each input variable influences the output 

• Training can be computationally expensive 

• The training process is highly reliant on the data and has risks of underfitting and overfitting 
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Nevertheless, as the prediction of CEI is numeric, and as there is a wide selection of potential 

numeric input variables that are well defined, ANNs can provide a suitable method to model CEI 

through supervised regression. ANNs are an umbrella term for neural networks, of which there are 

several types, however they typically refer to Multi-Layer Perceptron (MLP). A perceptron is 

modelled after a neuron within the human brain: it takes multiple inputs, each of which have a 

weighting applied. The neuron processes the inputs, and applies an activation function as an output 

(ASCE, 2000) (Figure 6).  

 

 

Figure 6: A schematic of a perceptron from an ANN (London and Fountas, 2021) 

 

MLPs consist of many interconnected neurons which are arranged in layers of multiple neurons 

(Figure 7). The number of input neurons must match the number of entries in the training dataset, 

and the output neurons must match the desired output. However, in between, there is at least one 

hidden layer. The number of neurons can vary depending on the model, the dataset and the initial 

problem. 

 

 

Figure 7: A schematic of an MLP with one hidden layer (Suhartono et al., 2017) 
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Activation functions are triggered from the output of a neuron, and there are a range that can be 

selected, although today, ReLU is the default function in a number of scenarios due to its efficiency. 

 

Table 2: A comparison of typical activation functions 

 

Once initialised, the network is exposed to training data of both inputs and the outputs. When the 

ranges of each respective variable are of different scales, datasets are typically normalised, 

otherwise the weights within the network could become accentuated, and generalise the input data 

poorly (Vabalas et al., 2019). It is important to have enough data to train the network too, although 

there aren’t any clear rules for a specific threshold for the starting dataset (Agatonovic-Kustrin and 
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Beresford, 2000; Haykin and Network, 2004). The initial dataset is typically split into two parts to 

represent training data used to set the weights within the network between perceptrons. The 

second portion is then used as validation, where the model predicts using the shown inputs, and the 

outputs are compared with the actual values, to evaluate the accuracy of the model. The 

training:validation split can vary, but a common split is 70:30 (Haykin and Network, 2004).  

The model is repeatedly exposed to the training data, with validation occurring each time the entire 

training set has been seen once, the period of which is known as an epoch. The model repeatedly 

sees the data, so accuracy improves, and the model fits to the context. The number of epochs 

required should ideally be low, however there isn’t a set rule for how many are suitable. 

Fitting is the process where a model attempts to generalise a dataset, in order to make accurate 

predictions on unseen data. There are typically three categories to describe how well fit a model is, 

that can be described using bias and variance: 

• Underfit (high bias, low variance) – the model has failed to generalise the training data well, 

and leads to poor predictions with a high error.  

• Good fit (low bias, low variance) – the model has generalised the training data well, and has 

a low error with the validation set. 

• Overfit (low bias, high variance) – the model has learned from the training data too well, 

likely through overexposure, and performs poorly through the validation process. 

Underfitting generally occurs due to unsuitable algorithm choice, network design, insufficient data 

or underexposure (Narayan and Tagliarini, 2005). Overfitting can typically occur when the model is 

overexposed to the training data, usually through an excess number of epochs (Figure 8). 

One method of improving the accuracy of results is through an ensemble approach, typically K -Fold 

Cross Validation. This process randomises the data to avoid any continuity, then divides the data into 

discrete sections for testing and training K times. Each set of data utilises different portions of the 

dataset, to ensure that each is unique. K networks are then trained using each respective dataset to 

measure error/accuracy, and the mean is calculated across the cohort (Figure 9). Through using this 

staggered approach, it decreases the impact of anomalous values, and increases the reliability of 

predictions (Yadav and Shukla, 2016). 
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Figure 8: A demonstration of the error in training process and validation process, and where the fitting of the model is ideal 
(IBM, 2021) 

 

 

 

Figure 9: An Example of K-Cross Fold Validation, where K=5 and there is N data points (Fedotenkova, 2016) 
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1.4  Existing Literature 

Applications in modelling carbon emissions with ANNs have been limited. Leerbeck et. al (2020) 

modelled the short-term forecasting for the CEI of power grids using machine learning. A selection of 

30 input variables were identified based on data supplied from weather and electrical grid monitors 

in Sealand, Denmark, such as wind speed, total power generation and power imports/exports. The 

focus of this study was to take into account climatic factors, to provide short-term (at most 24h) 

forecasts for customers to be able to plan their energy loads for times when CEI was low. Some of 

the input variables studied directly influence the CEI of power production (e.g., % generated through 

renewables), and could be calculated without the use of machine learning, albeit through more 

complex techniques. However, despite the small regional study area, the results demonstrate the 

use of machine learning in successfully understanding variables that influence the CEI of power 

generation. 

Another study (Acheampong and Boateng, 2019) used ANNs to predict carbon emissions intensity in 

five countries: Australia, Brazil, China, India, and USA. A selection of development indices was used 

in the training process such as GDP, energy use and population. Each country had a group of twenty 

networks trained, and the best performing network was selected for sensitivity analysis to 

understand which was the most influential variable. The final step of this study decomposed the 

networks into their weights and biases, so that the results could be utilised by further studies. This is 

the most promising study in literature, as it validates the use of ANNs in estimating CEI directly. One 

risk of this study is the selection of the “best-performing” network. Due to the small data size, the 

subsampling required for training means the selected network is exposed to only 115 datapoints per 

variable (of which only ¼ are actual datapoints due to augmentation through interpolation). 

Furthermore, whilst the accuracy of the network’s prediction is promising, the models aren’t used 

for forecasting. 
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1.5  Aims and Objectives 

This study aims to construct and train effective ANNs for modelling the CEI of all energy use at a 

national scale. Two groups of models will be trained, the first cohort will involve a dedicated ANN for 

each country, trained exclusively using that country’s historic data. The second cohort will group 

countries together based on similar characteristics, and train a smaller group of models using 

combined historic data. Both groups will then forecast scenarios to see a) CEI predictions from each 

group and b) how the predictions compare from the individual networks, and the grouped networks. 

The objectives are to:  

1. Determine how an ANN may be constructed and used to model CEI for various countries 

2. Identify suitable input data for the training of the ANN 

3. Evaluate the accuracy of the various ANNs using R2 as a performance metric 

4. Use a range of scenarios as inputs to forecast predicted carbon emissions intensity from 

2020-2050 

5. Evaluate the two methods of projecting decarbonisation routes  
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2 | Methods 

2.1  Context 

2.1.1 Selected Indices 

The input variables for ANNs should generally characterise the modelled output, and have 

discernible features that the model can understand. An adequate number of predictors should be 

used to be able to train the model, however using too many inputs can lead to overfitting. In this 

study, a selection of financial and developmental indicators was selected from literature, to train the 

network and model the single output of CEI, summarised in Table 3. 

 

2.1.1.1 Carbon Emissions Intensity (CEI) 

As discussed previously, CEI is typically defined as the carbon dioxide emitted per unit energy 

consumed. It is dependent on the sources used to produce the energy, and can be highly influenced 

by the introduction of renewables. 

 

2.1.1.2 Energy Consumption 

With CEI directly influenced by the energy sector, the demands placed on energy would therefore be 

a key driver for CEI. It is well documented that energy use is closely linked to overall carbon 

emissions (Soytas et al., 2007; Uddin et al., 2016; Wang et al., 2016b). Energy generation has 

historically been dominated by fossil fuels (Kyritsis et al., 2017), with the introduction of renewables 

in recent decades helping to reduce CEI. However, cyclical spikes in energy demand and growing 

industries in developing nations still typically rely on fossil fuels (Abas et al., 2015). It has generally 

been found that increasing energy demand is correlated with increased carbon emission (Rout et al., 

2008; Halicioglu, 2009; Jahangir Alam et al., 2012; Mulder and Scholtens, 2013; Bauer et al., 2016; 

Kyritsis et al., 2017). Naturally, as energy demand continues to increase with a constant CEI, total 

GHG emissions will rise too. This highlights the importance of reducing CEI over time, to counteract 

projected energy demand increases (Riahi et al., 2017a; Rogelj et al., 2018; Gidden et al., 2019) 

whilst minimising overall GHG emissions. 
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2.1.1.3 Economic Growth 

It is generally understood that GDP is tied to GHG emissions (Tucker, 1995; Heil and Selden, 2001; 

Wang et al., 2016a), with higher GDP correlated to higher GHG emissions, although the 

Environmental Kuznets Curve (EKC) hypothesis adds complexity to this. Using an inverted U-Shape 

(Figure 10), the EKC highlights how at lower levels of economic growth, there can be increased 

environmental pollution and degradation due to the growth of industry. However, as the economy 

develops, it reaches a turning point, transitioning to a post-industrial economy, thus reducing 

environmental degradation (Dinda, 2004; Stern, 2004). The EKC has been documented in a number 

of global regions, including transitional economies (Narayan and Narayan, 2010; Tamazian and 

Bhaskara Rao, 2010; Apergis and Ozturk, 2015; Ahmad et al., 2017).   

 

 

Figure 10: The Environmental Kuznets Curve with progressive stages (Pettinger, 2019) 

 

2.1.1.4 Industrialisation 

As shown in the EKC, industrialisation can play an important role in carbon emissions, with industry 

referring to sectoral activities of agriculture, mining, manufacturing and processing of raw materials. 

Studies have found that industrialisation is correlated with GHG emissions although this varies based 

on stages of economic development (Li and Lin, 2015). In contrast, some studies have found there to 

be no causative relation between industrialisation and GHG emissions (Lin et al., 2015), and rather it 

covaries with other key indices such as economic growth and population size. Nevertheless, it is 

clear that industry involves heavy use of fossil-fuel derived energy sources (Ozawa et al., 2002; 

Zhang et al., 2020). The metric used here is represented through Industry’s value added as a 

percentage of overall GDP.  
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2.1.1.5 Population 

If population increases, so would the total GHG emissions as greater demand would be placed on 

existing energy infrastructure, leading to increases in absolute emissions. This has been studied in 

many regions (York et al., 2003; Lee and Oh, 2006; Lin et al., 2009), however it has also been found 

that population is an important influencer of CEI directly (Pan et al., 2019; Li and Ou, 2013). 

 

2.1.1.6 Urbanisation 

Urbanisation and CEI are typically closely tied to the development and wealth of a country too. Some 

studies have found the extent of this relationship varies by the stage of development. For example 

higher urbanisation has been found to decrease overall energy use in low-income countries, but 

inversely increase it in middle to high income groups (Poumanyvong and Kaneko, 2010). Other 

studies have found simpler relationships where increased urban area leads to higher overall carbon 

emissions (Sharma, 2011; Wang et al., 2014; Wang et al., 2020). There are arguments for both 

negative and positive impacts of urbanisation on the environment: increased urbanisation can lead 

to higher levels of manufacturing, consumption and energy use, whilst as the country develops, it 

will likely start to benefit from economies of scale, improved environmental regulations and policy 

and improved infrastructure. The EKC curve can also tie CEI to urbanisation (Ridzuan et al., 2020). 

 

2.1.1.7 Foreign Direct Investment (FDI) 

There is debate as to how trade and investment between countries can impact the environment. 

One theory is that FDI facilitates economic growth and thus could both reduce and increase carbon 

emissions. Studies have found that FDI tends to have an inverted-U shape relationship with carbon 

emissions, akin to the EKC theory (Wang et al., 2021b; Sbia et al., 2014; Song et al., 2021; Essandoh 

et al., 2020). However this relationship has been disputed with models that counter the inverted-U 

shape model (Zhou et al., 2018), furthered by the theory of Pollution Havens, that posits 

industrialised nations seek cheaper manufacturing sites abroad, at the cost of environmental impact 

(Levinson and Taylor, 2008). This is largely blamed on exploiting lax environmental regulations in 

certain countries, as well as other factors such as cheaper labour (Kastratović, 2019; Essandoh et al., 

2020; Garsous and Kozluk, 2017). For this study, FDI is measured as foreign investment received by a 

country, as a percentage against its GDP. 

 



25 
 

2.1.1.8 Trade Openness 

Closely related to FDI, trade openness is also contested in its relation with GHG emissions. Some 

studies have found that increased trade openness can reduce carbon emissions and CEI, typically 

through providing access to more sustainable products and technologies (Shahbaz et al., 2013; 

Acheampong, 2018; Wang and Wang, 2021). However other studies have found that within certain 

regions, increased trade can lead to higher overall GHG emissions (Ren et al., 2014; Ahmed et al., 

2017; Shahbaz et al., 2017b). Trade openness is considered as the sum of import and exports of a 

country, as a percentage against its GDP. 

 

2.1.1.9 Research and Development (R&D) 

Technological advancement is a key factor in enabling a nation to transition away from fossil fuel 

energy sources as well as efficiency increases in existing energy production technologies, reducing 

CEI. Multiple studies have generally found that both GHG emissions and CEI are negatively 

correlated with increased R&D (Lee and Min, 2015; Fernández Fernández et al., 2018; Awaworyi 

Churchill et al., 2019; Wang and Wang, 2019) with strong correlations when R&D is focussed on 

“Green” technologies (Lee and Min, 2015). As a metric, the number of patents filed within the 

country is used to represent overall research and development. 

 

2.1.1.10 Human Development Index (HDI) 

The developed state of a country has been found to be closely tied with carbon emissions, and 

challenges to becoming more sustainable. Some studies identify challenges to more developed 

countries in moving to sustainable technologies, when compared to their less developed 

counterparts (Neumayer, 2012). Others have found countries with higher energy intensities typically 

had greater barriers to reaching a higher developed status (Pîrlogea, 2012). Importantly, it has been 

found that the portion renewables makeup of the overall energy mix, is closely related to human 

development (Yumashev et al., 2020). For this study, the development of a country is represented 

through Human Development Index (HDI) from the United Nations Development Programme 

(UNDP). The metric draws on four key factors: life expectancy, expected years of schooling, mean 

years of schooling and Gross National Income (GNI) per capita (PPP $) (UNDP, 2021). Whilst this does 

not capture all dimensions of human development (for example, inequality) and has been criticised 

with alternate formulations proposed as successors (Sagar and Najam, 1998; Cahill, 2005; Hou et al., 

2015), it can still be a useful metric for human development and is widely used in studies across 
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many disciplines (Yumashev et al., 2020; Akbar et al., 2020; Ataey et al., 2020; Sarkodie and Adams, 

2020; Türe and Türe, 2021). 

 

2.1.1.11 Access to Renewables 

One of the primary methods of reducing CEI is through replacing fossil fuel sources with renewable 

energy generation (Irandoust, 2016; Emir and Bekun, 2019; Wang et al., 2021a). Excluding the 

opportunity to import energy from neighbouring locations, access to renewable sources is therefore 

a key factor in enabling a reduction in CEI. Two key studies were identified that provided potentials 

for renewable energy through photovoltaics (PVs) (Suri et al., 2020) and hydropower (Hoes et al., 

2017).  

Whilst the Earth as a whole receives varying levels of solar radiation, there can be barriers to utilising 

it efficiently with PVs. The study from Suri et al. (2020), takes into account the incoming solar 

radiation for different countries globally, but also factors that affect the potential power output. For 

example, the model considers scattering through clouds and water vapour, resulting in a Theoretical 

PV Potential. Considerations are then given to terrain accessibility, where PV sites can be situated 

and the efficiencies of PV modules at an optimum tilt, resulting in a Practical PV Potential. This final 

metric therefore provides a more realistic measure of potential solar energy generation. 

 

Figure 11: Map of Practical PV Potential (PVOUT) (Suri et al., 2020) 

 

Similarly, the study by Hoes et al. evaluated multiple possible hydroelectric power plants globally, 

based on river slope and discharge, resulting in analysis for 11.8 million locations. These individual 

sites were aggregated in ArcGIS, to then result in total potential hydropower generation per country.  
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Figure 12: Global map of gross hydropower potential distribution (Hoes et al., 2017) 

 

One limitation with the inclusion of renewables is lack of adequate data to represent wind power 

potential. Although wind energy is an important contributor, the hydro and solar metrics represent 

~80% of today’s renewable electricity generation (IEA, 2020), and so should provide adequate 

coverage for the requirements of this study. 

 

2.1.1.12 Overview 

All indicators were given coded terms used in this study and are summarised in Table 3. The grouped 

networks are exposed to some variables that an individual network would not benefit from. It is 

generally assumed that countries converge along the same path of development (Molina and Purser, 

2013), and thus a network exposed to only one country’s development, will typically produce a 

continuous series that grows with time. The benefit of HDI increases when a network is exposed to 

multiple countries, at different stages of development.  

As the metric for renewable potentials have no temporal dimension, they are only included in the 

grouped models, where a network may be exposed to multiple countries, and thus learn the 

relationships. The majority of the data is sourced from the World Data Bank, which has historical 

records for a range of development indices of all nations.  
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Variable Code Definition Units Usage Reference 

Carbon 
Emissions 
Intensity 

CO2 

Carbon emissions intensity is the volume of 
carbon emissions due to economic 
activity/economic growth. It is also defined 
as carbon emissions emitted per unit of 
energy consumed. 

CO2 intensity 
(kg per kg of 
oil equivalent 
energy use) 

Individual & 
Grouped 

World Data 
Bank, 2021 

Energy 
Consumption 

ENER 
Energy use refers to use of primary energy 
before transformation to other end-use fuels. 

Energy use 
(kg of oil 
equivalent 
per capita) 

Individual & 
Grouped 

World Data 
Bank, 2021 

Foreign Direct 
Investment 

FDI 

Foreign direct investment is the net inflows 
of investment to acquire a lasting 
management interest in an enterprise 
operating in an economy other than that of 
the investor. 

Foreign direct 
investment, 
net inflows (% 
of GDP) 

Individual & 
Grouped 

World Data 
Bank, 2021 

Economic 
Growth 

GDP 

GDP per capita the sum of gross value added 
by all resident producers in the economy plus 
any product taxes, divided by mid-year 
population 

GDP per 
capita 
(constant 
2010 US$) 

Individual & 
Grouped 

World Data 
Bank, 2021 

Industrialisation IND 

Industrialisation refers to an increase in 
industrial activity. It comprises value added 
in mining, manufacturing, construction, 
electricity, water, and gas. 

Industry, 
value added 
(% of GDP) 

Individual & 
Grouped 

World Data 
Bank, 2021 

R&D RND 
The R&D covers basic research, applied 
research, and experimental development. 

Trademark 
applications, 
total 

Individual & 
Grouped 

World Data 
Bank, 2021 

Population POP 

Total population refers to the total number 
of people living in a particular geographical 
area. It is based on the de facto definition of 
population, which counts all residents 
regardless of legal status or citizenship. 

Population, 
total 

Individual & 
Grouped 

World Data 
Bank, 2021 

Trade Openness TRD 
Trade is the sum of exports and imports of 
goods and services measured as a share of 
the gross domestic product. 

Trade (% of 
GDP) 

Individual & 
Grouped 

World Data 
Bank, 2021 

Urbanisation URB 
Urban population refers to people living in 
urban areas as defined by national statistical 
offices. 

Urban 
population (% 
of total) 

Individual & 
Grouped 

World Data 
Bank, 2021 

Development HDI 

A summary measure of average achievement 
in key dimensions of human development: a 
long and healthy life, being knowledgeable 
and have a decent standard of living. 

HDI range 0-1 
Grouped 
Only 

UNDP, 2021 

Hydro Potential HYD 
Estimation of potential power generation 
given the range of sites available within the 
chosen country 

kWh/m2/year 
Grouped 
Only 

Hoes et al., 
2017 

Solar Potential PV 
Practical PV potential, accounting for 
efficiency loses and environmental variations  

kWh/m2/year 
Grouped 
Only 

Suri et al., 
2020 

 

Table 3: An overview of the selected variables for training in the ANNs 
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2.1.2 Shared Socio-Economic Pathways 

The Shared Socio-Economic Pathways (SSP) are the product of a multi-disciplinary effort to 

understand the potential futures society could develop towards. They aren’t intended to be 

blueprints for how the world will develop, but rather provide scenarios that consider a range of 

plausible socio-economic factors for global development. The data from these scenarios could then 

be used by the climate change research community, to understand how the environment could react 

to the different pathways of development (Riahi et al., 2017b). Five scenarios were identified, and 

alongside the datasets, narratives were created to help describe the differences between each SSP. 

Each SSP can also be characterised by its response to climate change in the form of adaptation and 

mitigation (Figure 13). 

 

2.1.2.1 SSP1: Sustainability 

Low challenge to adaptation, low challenge to mitigation 

The world progresses on a more sustainable pathway. Due to a better understanding of the costs of 

environmental degradation, the global community mobilises collaboratively to limit climate change. 

Investments focus on human well-being through education and health, leading to a relatively low 

population and economic growth in higher-income countries. There is generally a focus on resource 

efficiency, lower energy demand, and international cooperation with key environmentally friendly 

technologies, which also helps to limit increasing inequality (Riahi et al., 2017b; O’Neill et al., 2017). 

 

2.1.2.2 SSP2: Middle of the Road 

Moderate challenge to adaptation, moderate challenge to mitigation 

The pathway does not change dramatically from historical trends. Although national institutions still 

work towards a sustainable future, there is inequality between countries, with varying degrees of 

success. There are some reductions in energy and fossil fuel usage, however population growth is 

moderate. In low to mid-income countries, economies develop rapidly and slow as they become 

more established. Globally, there wouldn’t be great technological innovations, and inequality 

persists (Riahi et al., 2017b; O’Neill et al., 2017). 
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2.1.2.3 SSP3: Regional Rivalry 

High challenge to adaptation, high challenge to mitigation 

SSP3 presents the greatest challenges. It is underpinned with a rise of nationalism that limits global 

cooperation due to concerns around competitiveness and increased rivalry. This individualistic intent 

spurs from security and protectionist ideologies in the face of environmental degradation. Policy and 

investments focus on regional energy and resource usage, with greater barriers to trade. Inequality 

is generally persistent, or worsens, particularly in developing countries. As a whole, economic 

growth is low, however there is an underlying dependency on fossil fuels and material intensive 

production. Population growth is uneven, slowing in developed countries, but remaining high in 

developing nations (Riahi et al., 2017b; O’Neill et al., 2017). 

 

2.1.2.4 SSP4: Inequality 

High challenge to adaptation, low challenge to mitigation 

SSP4 is characterised by increasing inequality both within and across countries. Within most 

economies, power and capital become concentrated within a business elite. There is a disparity 

between developing and developed countries: generally developed countries see higher levels of 

education, higher economic growth and greater technological development. Global energy usage 

still remains reliant on fossil-fuels, however low-carbon options are introduced due to uncertainty 

with the market (Riahi et al., 2017b; O’Neill et al., 2017). 

 

2.1.2.5 SSP5: Fossil-fuelled Development  

Low challenge to adaptation, high challenge to mitigation 

Across the globe there is economic growth, with strong competitive markets spurring technological 

advances and improvements to human capital. Through competition, global markets flourish with 

few barriers to intercountry operations. There is also a focus on improvements to health and 

education, and helping to limit inequality between disadvantaged demographics. Global population 

peaks at the mid-century, and starts to decline. All this development comes at the cost of increased 

reliance on fossil-fuels, with the use of new technologies to help offset environmental degradation 

at the small scale. At the global scale, the environmental cost is seen as an acceptable trade-off for 

economic growth, with solutions such as geo-engineering becoming more palatable (O’Neill et al., 

2017; Riahi et al., 2017b). 
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Figure 13: The 5 SSPs and their respective challenges to adaptation and mitigation (O’Neill et al., 2014; O’Neill et al., 2017) 

 

 

2.1.3 Selected Countries and Groupings 

Previous studies have analysed relatively small groups of countries to understand the efficacy of 

their approaches. In order to build on this experience, this study widens the scope to include 30 

countries, selected through their overall GHG emissions (Figure 14). 
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Figure 14: The selected top 30 largest GHG emitters, 2018 (WRI, 2021)  
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When attempting to classify these countries, both the UN and the International Monetary Fund 

(IMF) have methods to determine how developed a country is. Through the World Economic 

Situation and Prospects (WESP), the UN classified countries into three categories: Developed 

economies, economies in transition and developing economies (UN, 2020).  The method for 

classifying countries is generally built around HDI (Nielsen, 2011). Initially arbitrary boundaries were 

setup to define countries into the 3 categories, however it has since made adjustments and no 

longer relies on absolute thresholds, in favour of relative boundaries (Nielsen, 2011). Typically, a 

country with an HDI greater than 0.8, would be classified as “Developed”.  

The IMF method determines whether a country is “Advanced” or still “Emerging”, primarily based on 

its economic performance (IMF, 2021). There are 3 criteria taken into account: 

1. Per capita income level 

2. Export diversification 

3. Integration into the global financial system 

As an example, a country with high per capita GDPs, but with the export of a single good making up 

70% of their total exports would likely not be classified as advanced. However their classification 

system is not solely limited to these criteria, and can take into account many other factors 

depending on the country’s context (IMF, 2021). 

Table 4 identifies the classifications for the selected countries. Due to the differences in 

methodological approaches, 5 countries (Russian Federation, Saudi Arabia, Turkey, Argentina and 

Poland) have conflicting statuses between the institutions, classified as “Developed” by the UN, 

however still considered “Emerging” by the IMF.  

Of the 30 countries, there is a spread across both classification systems: by the UN method, there 

are 15 “Developed” and 15 “Developing” countries. Using IMF’s classification, there are 10 

“Advanced” and 20 “Emerging” countries. For the grouped networks, the countries were divided by 

the IMF categorisations, as the UN status is so closely tied to HDI.  
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Country UN IMF 

China Developing Emerging 

United States Developed Advanced 

India Developing Emerging 

Russian Federation Developed Emerging 

Indonesia Developing Emerging 

Brazil Developing Emerging 

Japan Developed Advanced 

Iran, Islamic Rep. Developing Emerging 

Germany Developed Advanced 

Canada Developed Advanced 

Mexico Developing Emerging 

Congo, Dem. Rep. Developing Emerging 

Korea, Rep. Developed Advanced 

Saudi Arabia Developed Emerging 

Australia Developed Advanced 

South Africa Developing Emerging 

Turkey Developed Emerging 

United Kingdom Developed Advanced 

Pakistan Developing Emerging 

Thailand Developing Emerging 

Argentina Developed Emerging 

Malaysia Developing Emerging 

Italy Developed Advanced 

Vietnam Developing Emerging 

France Developed Advanced 

Nigeria Developing Emerging 

Poland Developed Emerging 

Egypt, Arab Rep. Developing Emerging 

Spain Developed Advanced 

Venezuela, RB Developing Emerging 

 

Table 4: Categorisation of the top 30 emitters (UN, 2020; IMF, 2021). Countries highlighted in orange have differing 
statuses between the institutions: considered developed by the UN, but still emerging by the IMF 

 

 

 

2.1.4 SSPs and Projection of Indices 

Of the metrics discussed previously, Population, Urbanisation and GDP all have projections directly 

associated with each SSP, and data is provided from the project. The units of GDP are important due 



35 
 

to a slight variation between the SSPs and available data from the World Data Bank: the SSPs report 

GDP using the purchasing power parity (PPP) of the US$ from 2005. Whilst the World Data Bank has 

a range of reported units for GDP, the typical method to correct for PPP and inflation requires 

respective coefficients for each year (Turner et al., 2019), which aren’t included in the SSP 

projections. As such, an alternate formula was derived (Equation 1) that utilised the same 

mechanisms as inflationary correction, but allowed the conversion of the SSPs GDP PPP Constant 

US$2005 to GDP Constant US$2010, using the data available within the World Data Bank. Population 

and Urbanisation could both be utilised directly. 

 

𝑥2010 =

𝑧2005  ×  𝑝2005
𝑐2005

 × 𝑦2005

𝑦2010
 × 𝑢 

Equation 1: Conversion of GDP PPP Constant US$2005 to GDP Constant US$2010, where x2010 is GDP Constant US$2010, 
z2005 is GDP PPP Constant US$2005, p2005 is PPP Conversion 2005, c2005 is GDP Current LCU 2005, y2005 is GDP Constant LCU 

2005, y2010 is GDP Constant LCU 2010 and u is GDP Current US$ 

 

For the remaining indices, interpretations were made of quantitative adjustments based on the 

descriptions with the SSP narratives. Naturally, each of these indices has a great deal of complexity, 

and warrants modelling to be able to justify real world projections. However, as the nature of this 

study is focusing on the suitability of ANNs and the outcomes of the SSPs, and the large scope given 

the selected variables, countries and scenarios, simplistic and arbitrary translations were made 

between the qualitative descriptions and quantitative outputs. O’Neil et. al (2017) supplements the 

narrative descriptions with clear changes in various development indicators, a subset of which is 

shown in Table 5. These were used directly where possible, otherwise the parameters were inferred 

from the narrative descriptions, and are shown in Table 6.  
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SSP element SSP1 SSP2 SSP3 SSP4 SSP5 

Growth  
(per capita) 

High in LICs, MICs; 
medium in HICs 

Medium, uneven Slow Low in LICs, 
medium in other 
countries 

High 

Inequality Reduced across 
and within 
countries 

Uneven moderate 
reductions across 
and within 
countries 

High, 
especially 
across 
countries 

High, especially 
within countries 

Strongly reduced, 
especially across 
countries 

International 
trade 

Moderate Moderate Strongly 
constrained 

Moderate High, with regional 
specialization in 
production 

Globalization Connected 
markets, regional 
production 

Semi-open 
globalized 
economy 

De-globalizing, 
regional 
security 

Globally 
connected elites 

Strongly globalized, 
increasingly 
connected 

Consumption 
& Diet 

Low growth in 
material 
consumption, 
low-meat diets, 
first in HICs 

Material-
intensive 
consumption, 
medium meat 
consumption 

Material-
intensive 
consumption 

Elites: high 
consumption 
lifestyles; Rest: 
low consumption, 
low mobility 

Materialism, status 
consumption, 
tourism, mobility, 
meat-rich diets 

 

Table 5: How the SSPs affect various socio-economic development indicators (O’Neill et al., 2017) 

 

 

Table 6: The interpretations for the selected parameters based on the narratives. Cells in grey either remain constant or 
have data provided, so extrapolation is not necessary. LIC, MIC and HIC refer to low-income, medium-income and high-

income respectively 

Variable SSP1 SSP2 SSP3 SSP4 SSP5 

Energy 
Consumption 

Low Higher in LIC High Low/Medium High 

Foreign Direct 
Investment 

High Medium Low 
High in OECD, low 
in others 

High 

Economic Growth 
High in LIC, MIC; 
Medium in HIC 

Medium Slow 
Low in LIC, 
Medium Other 

High 

Industrialisation Low Medium 
High in LIC, 
Medium Other 

High in LIC, 
Medium Other 

High in LIC, 
Medium Other 

R&D High Medium Low 
High in OECD, low 
in others 

High 

Population Low Medium 
Rich OECD, low; 
Others, high 

Rich OECD, low; 
Others, high 

Low 

Trade Openness Medium Medium Limited Medium High 

Urbanisation High Medium Low High High 

HDI High Medium Low 
Low in LIC, 
Medium in Other 

High 

Hydro Potential Constant Constant Constant Constant Constant 

Solar Potential Constant Constant Constant Constant Constant 
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2.1.4.1 HDI 

It can be assumed that most countries follow the same trajectory for HDI development (Molina and 

Purser, 2013). Whilst the current HDI data is noisy and temporally limited, the rate of change of HDI 

was plotted against HDI values to form an exponential model for how HDI changes over time. There 

is a general trend, demonstrating how as a country approaches a HDI of 1, the development slows 

(Figure 15). This allowed the creation of a formula (Equation 2) which could be adjusted to represent 

faster or slower HDI growth (Figure 16). Naturally this doesn’t include situations where a country 

may lower in HDI, however it is assumed that all countries continue to grow at differing rates. 

 

Figure 15: HDI change against HDI Value 

 

𝑥𝑛 = 0.984𝑥(𝑛−1) + 0.016 

Equation 2: Formula to represent HDI Growth, where x is HDI and n is the current year 

 

 

Figure 16: Example changes in HDI for three different scenarios 
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2.1.4.2 FDI and Trade Openness 

Both FDI and Trade Openness are generally unlikely to experience continuous growth, as they are 

represented as a percentage against GDP, which itself will continue to grow. Therefore, targets were 

set conservatively based on the current spread of respective values across all countries globally, with 

outliers removed (Figure 17): for example, Hong Kong’s trade is approximately 400% with respect to 

its GDP, but isn’t necessarily a representative target for other countries. With these targets, the 

country’s latest historic data could be interpolated to them linearly to 2050, providing inputs for the 

ANN. 

 

 

Figure 17: The spread of FDI and Trade for all countries with data available in 2014, where the red dashed lines mark the 
lower, moderate and upper targets for projections (WDB, 2021) 

 

2.1.4.3 R&D, Energy Use and Industrialisation 

Research and Development was assumed to continuously increase at differing rates, so a simple 

linear growth was applied to each country’s latest historic data. Energy use was modelled linearly, 

broadly using the regional projections within the SSPs. Whilst these projections apply to an entire 

region, the growth in energy use by the mid-century was approximated, and applied linearly to each 

country so that each pathway had a comparable change in energy usage. Industrialisation presented 
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the greatest challenge as each country has its trend, and the SSPs don’t provide clear indication for 

the industrialised state. Each country was extrapolated based on the historic data, to take into 

account their current trajectories, and then minor adjustments were applied to represent changes 

from the various scenarios with limits set to prevent implausible scenarios i.e., negative values. An 

example of all the extrapolated indices is shown below in  Figure 18 for the UK. 

 

 Figure 18: Extrapolated indices for the UK to 2050, overlaid on historic data 
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2.2  Modelling 

2.2.1 ANN Design 

In order to produce the model, TensorFlow (2021) and Keras (2021) were used in a Python 3.7.9 

environment. As stated previously, two network styles would be used: the first would be trained 

with data from each individual country and use 8 input variables whilst the latter would group 

countries together by their IMF categories and train two networks on 11 variables. This split can be 

seen in Table 3.  When deciding on the design of the model, there are few governing rules, as the 

design can be so particular to the problem it is being applied to (Judd, 1990; Rafiq et al., 2001; 

Haykin and Network, 2004). There can be risks such as adding too many neurons that result in 

overfitting, whilst too few could result in underfitting. Similarly, too many hidden layers can 

decrease the reliability of the network (Kanwar et al., 2019). It is generally accepted that network 

growing and pruning is the best method to approach optimisation (Haykin and Network, 2004). As 

previous studies have approached similar analyses (Acheampong and Boateng, 2019), the base 

design for the individual networks of 8 input neurons, 1 hidden layer with 5 neurons, and 1 output 

neuron was selected (Figure 19). The grouped IMF networks had the 3 additional inputs to represent 

the added variables (Table 3), however they featured the same 5 neuron hidden layer to form a 

network of 11-5-1. 

 

 

Figure 19: The representation of the ANN for individual countries 
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2.2.2 Data and Augmentation Techniques 

Data augmentation is used to improve the amount of available data or diversity by modifying or 

duplicating data with the end goal of improving the training of an algorithm. The dataset from the 

World Data Bank provides historic values for the indices, however there are gaps for certain years. 

As such, the data was trimmed to the years 1980-2014 inclusive, which generally provided the most 

continuous series across the countries and indicators, with some exceptions such as Industrialisation 

( Figure 18). In cases where there were zeroes between two datapoints, a simple linear interpolation 

was used to make the series continuous. However, at most this only provides 35 data points per 

input, for each country, which is limited for machine learning applications.  

There are many methods to augment datasets, however previous studies have typically utilised 

quadratic interpolation (Sbia et al., 2014; Shahbaz et al., 2017a; Acheampong and Boateng, 2019). 

This technique is generally superior to linear interpolation, as it helps to characterise trends within 

the data (Figure 20). Whilst it may be disadvantageous due to the accentuation from the spline, this 

inherently creates noise in the augmented data, which helps to limit overfitting. In line with previous 

studies, the annual dataset was quadrupled into an augmented “quarterly” dataset through 

interpolation. It is important to note, that the interpolation didn’t form actual quarterly data, 

through methods such as quadratic sum (Sbia et al., 2014; Shahbaz et al., 2017b) as the SSP 

projection data is based on annual figures. 

 

 

Figure 20: Demonstration of different interpolation techniques using the Scipy library (Scipy, 2020) 
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This interpolation technique was only applied to the data for individual countries, and not for the 

grouped networks. After interpolation, each individual country would have 136 data points per 

input, whereas the grouped networks would benefit from multiple countries, totalling 340 and 680 

data points per input for “Advanced” and “Emerging” respectively, and thus should have sufficient 

data for training. 

 

2.2.3 Fitting the Model 

Given the precedents of using ANNs with these data types, overfitting is a risk. As risk of overfitting 

increases with increasing epochs, one method to limit overfitting is to employ an early stopping 

protocol, and limit the number of epochs (Prechelt, 1998). In order to implement early stopping, a 

limit on the number of allowable epochs was set that is typically higher than the expected epochs 

required. After each validation stage, the mean square error is calculated and reported.  

The early stopping protocol monitors this “loss” value (a value representing the penalty for poor 

predictions), and if there isn’t any improvement in this value after a defined period, the training 

stops. In the implementation of this protocol, the maximum number of epochs was set at 1000, and 

the patience (the number of epochs without improvement) was set to 5. Once this limit has been 

reached, the model halts training, reloading the weights for the model from the epoch at the start of 

the patience period. This prevents any potential overfitting through the five epochs of patience. The 

loss value monitored here was Mean Square Error (MSE), which is the default loss measure for 

regression-based machine learning. It is calculated by the following: 

 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦̃𝑖)2

𝑛

𝑖=1

 

Equation 3: Formula for MSE, where 𝑛 is the number of data points, 𝑦
𝑖
 are observed values, and 𝑦̃

𝑖
 are the predicted values 

 

Whilst MSE was chosen as the metric within Keras, R2 was also used to measure the network 

performance with training and projections. Scikit provides an R2 score function by comparing 

predicted values against actual (Scikit, 2021). The equation for this is given in Equation 4. 
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𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑓𝑖)2

𝑖

∑ (𝑦𝑖 − 𝑦̅𝑖)2
𝑖

 

Equation 4: Calculation of R2, where yi is the data, fi is the modelled data and 𝑦̅i is the mean of the observed data 

 

2.2.4 Ensemble Training & Code 

For this study, 100 networks were trained per cohort, using randomised divisions of the data for 

each iteration (Figure 21). The use of python enabled logging of the training process through the 

performance and accuracy metrics such as MSE, R2 and epochs (history.csv, error_histogram.png and 

r2.png), as well as saving out the weights from within the networks (checkpoints), so that each of the 

networks could easily be loaded up for projections as a cohort. Part of this output also included the 

scalers used to normalise the input and output values, a requirement for scaling the extrapolated 

inputs for projections, and rescaling the projected output.  

 

Figure 21: An overview of the code outputs, where n is a single trained network  

 

The process of running projections then procedurally loaded up the weights of each model, 

processed the extrapolated inputs for SSP1-5, and recorded the collective outputs for all 100 models 

per cohort, alongside characteristics of the data (median, mean, standard deviation etc.), before 

moving to the next set of models.  

All code and datasets used are available here: https://github.com/rdemello/Dissertation. 

  



44 
 

3 | Results 

3.1  Training 

Example outputs from the training are given below, using the data from the training history in Figure 

22 and the error histogram and R2 in Figure 23, for the 6th UK Model. 

 

 

Figure 22: Training of Model 6 for the UK, demonstrating the loss for both training and validation, before stopping at epoch 
317, and reverting the weights back to epoch 312 

 

 

 

Figure 23: Automatically recorded performance metrics during validation for UK Model 6. The graph to the left shows the 
error spread and count, whilst the graph to the right shows the R2 
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3.1.1 Individual Networks 

The training of the individual networks varied on a country-by-country basis (Figure 24), with some 

success and some poor performance. 

 

 

Some countries performed quite well such as Germany, UK and Democratic Republic of the Congo, 

others experienced large ranges of predictions across their networks and generally poor R2 values. 

The Advanced countries had better performance than the Emerging countries. The former has a 

mean R2 of 0.85, whilst the latter only managed 0.58.  

 
Figure 24: The R2 performance of 
the individually trained networks per 
country. Above are the Emerging 
countries, and to the left are the 
Advanced 
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When reviewing the number of epochs required before the early stopping protocol was triggered, all 

countries are comparable with some anomalies such as Vietnam, Malaysia and Venezuela. The 

Emerging countries required an average of 127 epochs, while the Advanced countries required an 

average of 131 epochs. 

 

 

Figure 25: The number of epochs 
required for the individually trained 
networks per country. Above are the 
Emerging countries, and to the left 
are the Advanced 
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3.1.2 Grouped Networks 

The two sets of grouped networks generally trained well, with the Advanced countries performing 

slightly better with an average R2 of 0.93, while the Emerging countries achieved an average R2 of 

0.84. 

 

Figure 26: The R2 performance and epochs required for the Advanced and Emerging networks 

 

The Advanced countries required more epochs to complete their training, with an average of 310 

epochs, compared to the Emerging countries, which averaged 183. 

 

3.1.3 Comparison Between Network Types 

When comparing the results from both training methods, the grouped networks generally have 

better R2 for most countries (the exceptions being Germany, Italy, Democratic Republic of the 

Congo, India and Pakistan). The Emerging countries see the biggest improvement with an average R2 

increase of 0.24 across the 20 countries when comparing the individual networks to grouped. On the 

other hand, the Advanced countries see only a 0.08 improvement to R2 by using the grouped 

network over the individual. 

The number of epochs required for the grouped network was greater than the individual networks 

(with the exception of Malaysia). The individual networks for Advanced countries on average 
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required 179 fewer epochs to train sufficiently, while the Emerging countries required 56 fewer 

epochs. 

Country IMF 

R2 Epochs 

Individual 
Individual 
Mean 

Grouped Individual 
Individual 
Mean 

Grouped 

Australia A 0.74 

0.85 0.93 

107 

131 310 

Canada A 0.66 124 

France A 0.82 90 

Germany A 0.96 158 

Italy A 0.97 149 

Japan A 0.76 176 

Korea, Rep. A 0.92 115 

Spain A 0.82 135 

United Kingdom A 0.91 136 

United States A 0.9 116 

Argentina E 0.55 

0.58 0.84 

111 

127 183 

Brazil E 0.6 79 

China E 0.79 124 

Congo, Dem. Rep. E 0.94 165 

Egypt, Arab Rep. E 0.19 104 

India E 0.95 157 

Indonesia E 0.51 73 

Iran, Islamic Rep. E -0.09 96 

Malaysia E 0.58 221 

Mexico E 0.22 73 

Nigeria E 0.73 179 

Pakistan E 0.95 139 

Poland E 0.83 127 

Russian Federation E 0.84 150 

Saudi Arabia E 0.4 81 

South Africa E 0.65 101 

Thailand E 0.69 121 

Turkey E 0.41 111 

Venezuela, RB E 0.19 154 

Vietnam E 0.73 170 

 

Table 7: The training results for the individual country networks, and the grouped networks for R2 and epochs required. The 
countries individual scores are colour coded based on their values with respect to the group networks e.g. green indicates 

the individual networks have a better R2 or required fewer epochs compared to the grouped value. 
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3.2  Projections 

3.2.1 SSP Projections for Individual Networks 

The 2050 results from the individually trained networks’ 5 SSPs for the Advanced and Emerging 

countries are displayed in Figure 27 and Figure 28 respectively. The mean is shown, with error bars 

representing the 95% confidence interval in the mean, from the 100 networks. Only two countries 

have scenarios that achieve zero CEI (Italy and the Democratic Republic of the Congo). Although not 

true for every country, the SSP1-3 in Advanced countries generally follow the same pattern, where 

SSP1 has a lower CEI than SSP2, which has a lower CEI than SSP3. SSP5 generally has a lower CEI than 

SSP4, except for Germany, where SSP5 is larger. 

 

Figure 27: The mean 2050 CEI for all SSP scenarios, for the Advanced countries individually trained networks. Error bars 
represent the 95% confidence interval for the mean 

The Emerging countries have more variation in which SSP results in the lowest CEI, although 12 of 

the countries have the inverse trend of the Advanced countries for SSP1-3, where SSP3 has a lower 

CEI than SSP2, which has a lower CEI than SSP1. 
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Figure 28: The mean 2050 CEI for all SSP scenarios, for the Emerging countries individually trained networks. Error bars 
represent the 95% confidence interval for the mean 

 

The trajectories for the UK (Advanced) and India (Emerging) are provided in Figure 29 and Figure 30 

respectively, as examples of their respective IMF groupings. 
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Figure 29: Projections of UK CEI for the 5 SSPs up to 2050 using the individually trained networks 

 

 

Figure 30: Projections of India's CEI for the 5 SSPs up to 2050 using the individually trained networks 
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3.2.2 SSP Projections for Grouped Networks 

The 2050 results from the grouped networks’ 5 SSPs for the Advanced and Emerging countries are 

displayed in Figure 31 and Figure 32 respectively. The mean is shown, with error bars representing 

the 95% confidence interval in the mean, from the 100 networks. No country achieves net zero CEI 

by 2050. Although not true for every country, the SSP1-3 in Advanced countries generally follow the 

same pattern, where SSP1 has a lower CEI than SSP2, which has a lower CEI than SSP3. SSP5 

generally has a lower CEI than SSP4, except for Germany and the UK, where SSP5 is larger. 

 

Figure 31: The mean 2050 CEI for all SSP scenarios, for the Advanced countries grouped trained networks. Error bars 
represent the 95% confidence interval for the mean 

 

The Emerging countries have more variety in which SSP results in the lowest CEI, although 16 of the 

countries have the same trend of the Advanced countries for SSP1-3, where SSP1 has lower CEI than 

SSP2, which has lower CEI than SSP3. 
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Figure 32: The mean 2050 CEI for all SSP scenarios, for the Emerging countries grouped trained networks. Error bars 
represent the 95% confidence interval for the mean 

 

The trajectories for the UK (Advanced) and India (Emerging) are provided in Figure 33 and Figure 34 

respectively. 
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Figure 33: Projections of UK CEI for the 5 SSPs up to 2050 using the grouped trained networks 

 

 

Figure 34: Projections of India’s CEI for the 5 SSPs up to 2050 using the grouped trained networks 
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3.2.3 Comparison of Networks 

The absolute value change from 2020 to 2050 is shown for all countries, projections and network 

types. In general, the Advanced countries see decreases in CEI whilst the Emerging countries see 

increases in both network types. 

 

Country 
Individual Grouped 

SSP1 SSP2 SSP3 SSP4 SSP5 SSP1 SSP2 SSP3 SSP4 SSP5 

Australia -0.11 -0.10 0.01 -0.11 -0.23 -0.54 -0.30 -0.05 -0.43 -0.66 

Canada -0.22 -0.14 -0.07 -0.08 -0.18 -0.09 0.06 0.16 0.02 -0.19 

France -0.37 -0.38 -0.20 -0.44 -0.65 -0.21 -0.04 0.18 -0.17 -0.27 

Germany 0.58 0.20 -1.08 0.06 1.07 -0.24 -0.14 -0.12 -0.30 -0.25 

Italy -1.17 -0.77 0.27 -0.64 -1.58 -0.37 -0.40 -0.20 -0.49 -0.41 

Japan 0.12 0.22 0.27 0.08 0.07 -0.85 -0.70 -0.51 -0.94 -0.89 

Korea, Rep. -0.57 -0.35 -0.14 -0.52 -0.66 0.25 0.22 0.33 0.24 0.14 

Spain -0.45 -0.40 0.01 -0.29 -0.53 -0.02 0.02 0.07 -0.01 -0.11 

United Kingdom -0.40 -0.38 -0.14 -0.32 -0.78 0.03 0.03 0.11 -0.12 -0.01 

United States -0.19 -0.11 -0.03 -0.07 -0.12 -0.72 -0.43 -0.15 -0.62 -0.75 

Advanced Mean -0.28 -0.22 -0.11 -0.23 -0.36 -0.28 -0.17 -0.02 -0.28 -0.34 

Argentina 0.03 0.02 -0.05 -0.01 0.06 -0.14 -0.01 0.06 0.06 -0.09 

Brazil 0.07 0.05 0.01 0.03 0.09 0.02 0.19 0.27 0.27 0.07 

China 0.38 0.27 0.08 0.23 0.53 -0.27 -0.11 -0.14 -0.42 -0.13 

Congo, Dem. Rep. 0.20 0.07 -0.03 -0.12 0.63 1.12 1.23 1.22 0.93 1.18 

Egypt, Arab Rep. 0.52 0.36 0.05 0.55 0.55 -0.23 -0.11 0.08 -0.11 -0.23 

India 1.03 0.72 0.40 0.80 1.34 0.17 0.31 0.49 0.17 0.14 

Indonesia 0.45 0.27 0.15 0.24 0.56 0.04 0.11 0.14 0.04 0.04 

Iran, Islamic Rep. -0.03 -0.07 -0.04 -0.08 -0.11 -0.18 -0.11 -0.07 -0.11 -0.15 

Malaysia 0.11 -0.04 -0.05 0.00 0.05 -0.14 -0.06 0.01 -0.13 -0.13 

Mexico -0.07 -0.05 -0.07 -0.05 -0.08 -0.33 -0.17 -0.06 -0.25 -0.29 

Nigeria 0.02 0.22 0.00 0.11 0.28 0.91 1.07 1.13 1.10 0.90 

Pakistan 0.92 0.64 0.34 0.65 1.12 0.36 0.42 0.49 0.45 0.37 

Poland 0.18 0.05 -0.04 0.01 0.16 -0.43 -0.30 -0.22 -0.36 -0.35 

Russia 1.21 1.39 0.32 0.93 1.57 -0.12 -0.05 -0.04 -0.06 -0.08 

Saudi Arabia -0.34 -0.47 -0.54 -0.46 -0.56 -0.10 0.08 -0.03 -0.09 0.08 

South Africa -0.19 -0.08 -0.04 -0.08 -0.10 -0.42 -0.25 -0.11 -0.25 -0.39 

Thailand -0.27 -0.15 -0.01 -0.17 -0.25 -0.12 -0.01 0.23 -0.03 -0.15 

Turkey 0.09 0.06 0.03 0.09 0.11 -0.25 -0.11 0.04 -0.13 -0.21 

Venezuela, RB -0.63 -0.47 -0.40 -0.52 -1.05 -0.10 -0.06 -0.09 -0.07 -0.10 

Vietnam -0.40 -0.18 -0.20 -0.22 -0.22 0.41 0.53 0.65 0.41 0.37 

Emerging Mean 0.16 0.13 0.00 0.10 0.24 0.01 0.13 0.20 0.07 0.04 

 

Table 8: The absolute value change in CEI from 2020 to 2050 for all countries, SSPs and network types. Colour scale used 
shows magnitude of change 
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For the individual networks, the countries with the greatest reduction of CEI was Italy, whilst Russia, 

Pakistan and India had the greatest increases in CEI. On the other hand, Japan had the greatest 

reduction in CEI from the grouped networks, while the Democratic Republic of the Congo and 

Nigeria both experienced the largest increases within the grouped network. As discussed, the order 

of CEI reductions across the SSPs vary between the two network types. Few countries see the same 

magnitude of change between the two network types, with some countries experiencing large 

discrepancies. 

 

 

Figure 35: The distribution of CEI changes for all SSPs from 2020 to 2050 for the individually trained networks 

 

When looking at the overall distributions for projected changes in CEI for Individual and Grouped 

networks (Figure 35 and Figure 36 respectively), the majority of projections experience minimal 

changes to CEI. The changes in CEI for the Individual networks are slightly more varied with a wider 

spread, whilst the Grouped network projections are generally more focused towards the centre of 

the distribution.  
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Figure 36: The distribution of CEI changes for all SSPs from 2020 to 2050 for the grouped trained networks 
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4 | Discussion & Limitations 

4.1  Discussion 

4.1.1 Performance of Individual Networks in comparison to Grouped 

The individually trained networks generally performed poorly in comparison to the grouped 

networks, where grouped networks achieved better R2, at the cost of more epochs. One contributing 

factor is likely the aforementioned data availability for the two training datasets. The data 

augmentation for the individual networks likely means that there is reduced variety and complexity 

in comparison to either of the grouped networks, resulting in fewer epochs for the ANN to 

generalise the data. Furthermore, the individual country datasets are subject to localised disruptions 

that aren’t typically captured by the selected variables. For example, Venezuela experienced 

substantial change through the past decades with the rise and fall of Chavez, leading to uncertainty 

(Solimano, 2005; Dachevsky and Kornblihtt, 2017; Briceño-Ruiz, 2019; Bull and Rosales, 2020). This 

turbulent period likely makes it challenging to identify relationships and generalise the data, when 

there can be unpredictable behaviour in some indicators (Figure 37).  

 

Figure 37: Historical data for select indices of Venezuela. While energy use per capita has a general increasing trend, GDP 
per capita and CEI are more unpredictable 

 

This unpredictability is likely what led to a wide range of R2 values across the cohort (Figure 24), as 

the partitioning for training/validation will result in randomised divisions for the training, potentially 

amplifying the unpredictability of the data. This partitioning effect can be seen with Vietnam, where 

there is a large spread of performance across the 100 networks, but it is heavily weighted at the 

upper ranges of performance, with a mean R2 of 0.73. 
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Countries such as Iran and Egypt trained poorly (R2 of -0.09 and 0.19 respectively), however their 

performance was consistent across each respective cohort with relatively small ranges. This 

indicates that while both countries have experienced developmental instability through revolution 

(Dehesh, 1994; Mansour, 2008; El-Said and Harrigan, 2014; Abdelkader, 2017; Engo, 2021), the 

networks are consistent in their poor characterisation of the dataset. It highlights that whilst the 

historic data may have unpredictable behaviour, the selected indices may not be the most suitable 

to generalise CEI for these countries.  

In contrast, grouping the countries improved accuracy for 24 countries, and worsened for 5 (Russia’s 

accuracy was the same under both types). The increased accuracy was likely due to the larger size of 

the dataset, as well as the added complexity of exposure to multiple countries. 

 

4.1.2 Interpretation of SSP Projections 

When looking at the predictions from the individual networks, countries generally had 2050 CEI 

projections that were close to one another for the SSPs. Few countries reach a zero CEI, however 

those that do are potentially anomalous. The countries that performed the best in validation (Italy 

and Germany) had uncharacteristic projections in comparison to the rest of the group, with large 

error bars, a possible sign of overtraining (see 4.1.3). Furthermore, Germany displays 

uncharacteristic behaviour for the Advanced countries, where SSP3 projects the biggest 

improvement in CEI across the scenarios. Germany imports 63.4% of its energy, of which the 

majority is fossil fuel based (Eurostat, 2021). Therefore, a scenario with increased regional rivalry 

and concerns around security of resources may lead to reductions in trade around energy, and 

forces Germany to rely on domestic energy production, which would have to be through 

renewables. However, Italy is also a large consumer and importer of energy, yet presents SSP3 as an 

overall increase in CEI. Studying the energy imports and fossil fuel usage as percentages of total 

energy use, reveals the inverse of what is expected from SSP3 (Figure 38). As Germany has become 

more reliant on imports, its fossil fuel usage has declined over time, whereas Italy’s fossil fuel usage 

and energy imports are closely coupled. This may demonstrate the benefits of ANNs in interpreting 

multiple sets of data to make predictions beyond the direct contributors, such as how technology 

and GDP could be influential. However, as discussed, predictions of Germany have high uncertainty 

and are uncharacteristic of the remainder of the group. 
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Figure 38: The percentage energy imported of total energy use, and percentage of fossil fuel sources used of total energy 
production for Germany and Italy 

 

Similarly, the Democratic Republic of the Congo and Saudi Arabia demonstrate large uncertainty in 

their respective projections. A number of the emerging countries exhibit the same trend as 

Germany, where SSP3 has lower CEI projections than SSP1, which is unexpected as SSP1 has a lower 

challenge to both adaptation and mitigation in comparison to SSP3. This may be a weakness of the 

individually trained networks, and limited data availability. It is also important to remember that R2 

across the 30 countries isn’t ideal: the advanced countries have an average of 0.85, however the 

emerging was far lower at 0.58, and so results from these models will not be entirely accurate. Two 

countries that did achieve good accuracy were India and the UK (0.95 and 0.91 respectively), and 

their trajectories were examined with respect to the historic data in Figure 29 and Figure 30. Here, 

the future projections follow historic trajectories, with the SSPs offering differing pathways of 

growth and decline in CEI for India and the UK respectively. 

The grouped networks present projections that are closer in spread across SSPs as can be seen from 

the India and UK projections (Figure 33 and Figure 34), where projections follow the same 

trajectories, but are more closely aligned. The countries follow similar characteristics, with SSP2 and 

3 never offering the lowest reductions in CEI. SSP1 carries the most success, the best scenario for 13 

countries, followed by SSP5 that is the optimum for 12 countries and SSP4, the best for 8 countries: 

Egypt and Indonesia have multiple scenarios that result in the same CEI change by 2050. However, 

out of all these scenarios, no country achieves a CEI of zero.  
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Figure 39: Absolute change in CEI with the best performing SSP for each country 
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SSP4 and SSP5 offered the best reductions for all the Advanced countries modelled, whereas 13 of 

the 20 Emerging countries modelled benefit the most from SSP1 (Figure 39). As SSP1 presents the 

lowest barriers to adaptation and mitigation, it would follow that it presents the best opportunity to 

reduce CEI, particularly for emerging countries that would rely on technology transfer, reduced 

consumption and greater global mobility to reduce emissions. However, the Advanced countries 

specifically benefit most from SSP4 and SSP5, scenarios that generally promote competitiveness 

between countries, giving those which are highly developed clearer pathways to reducing their 

environmental impact. It is also noteworthy that SSP1 still presents good opportunities for the 

Advanced countries, typically being the second-best scenario. However, it seems the advantage 

provided by the more developed economies results in the competitive scenarios causing greater 

reductions in CEI. 

 

4.1.3 Uncertainty in Projections compared with Historic Coverage 

There is generally large variance in the 95% confidence interval across SSPs and countries. Although 

the models have a high R2, there is an increase in uncertainty when projecting forward. This can be 

seen in Figure 40, where the modelled mean and min/max from the 100 models generally fits well 

around the historic data. However, moving towards the projections for 2020 and 2030 based on 

SSP1, the uncertainty increases, although confidence around the mean is still generally good. One 

cause of this may be due to the ensemble method, where a single model may only be exposed to 

70% of the historic data, and validated against the remaining 30%, the randomisation across the 100 

models means the collection is exposed to all historic data. The SSP assumptions then result in the 

cohort utilising data never seen before, which increases variance. This is one of the challenges with 

the limited data availability - larger datasets would likely have more variety through the training, and 

give the network more complexity to understand. It may be improved too, through additional data 

augmentation techniques, although most techniques still rely on the core data which is augmented, 

and so have limitations to their application (Aftab and Siddiqui, 2018; Balabanov and Granath, 2020). 
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Figure 40: Comparison of the historic UK CEI data, modelled historic data and SSP1 projections. Blue represents the min and 
max across all models, orange is the mean of the cohort, and green are the lower and upper bounds of the 95% confidence 

interval for the mean. Dashed grey is historical data used for training.  

 

4.1.4 Influence of Missing/Zero Data 

Although data was trimmed to avoid gaps in recorded values, some variables still have gaps in their 

historic data, as seen in the UK Industrialisation ( Figure 18). For countries with missing data nested 

between data points, interpolation was carried out. Individual country networks were trained before 

and after this interpolation, and the changes in accuracy were recorded (Table 9). There is a mixed 

response to removing the zeros: whilst five countries see some minor improvements, three see no 

change and four see reductions in accuracy. Note, this process was only an interpolation and not an 

extrapolation, and so some countries still have some zero data. The changes in R2 show that the 

presence of zero data is generally not influential in degrading the performance of the individual 

networks. This can be corroborated with Figure 41, where no correlation can be seen with missing 

data and the performance of predictions across the 30 countries. 
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Country IMF 
Original Filled Zeros Change 

in R2 Total R2 Total R2 

Argentina Emerging 0% 0.51 0% 0.55 0.04 

Congo, Dem. Rep. Emerging 20% 0.94 17% 0.94 0.00 

Egypt, Arab Rep. Emerging 6% 0.26 0% 0.19 -0.07 

Indonesia Emerging 4% 0.51 1% 0.51 0.00 

Iran, Islamic Rep. Emerging 1% -0.09 0% -0.09 0.00 

Nigeria Emerging 11% 0.69 3% 0.73 0.05 

Pakistan Emerging 1% 0.96 0% 0.95 -0.01 

Saudi Arabia Emerging 12% 0.36 3% 0.40 0.04 

South Africa Emerging 0% 0.68 0% 0.65 -0.02 

Turkey Emerging 0% 0.34 0% 0.41 0.08 

Venezuela, RB Emerging 3% 0.35 1% 0.19 -0.17 

Vietnam Emerging 10% 0.70 10% 0.73 0.03 

 

Table 9: Countries with missing data, the % missing and R2 value (rounded to 2 d.p.) for the trained networks using the 
original dataset, and the filled dataset. Change in R2 from before and after interpolation is colour coded where green 

represents improvement and red represents diminishment of accuracy. 

 

 

Figure 41: Plot of the average R2 for each country against the percentage missing data 
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4.1.5 Approaches to Grouping Countries 

As discussed previously (2.1.3), the IMF classifications were selected as the grouping method, 

however other groupings were tested, along with a single globalised group (Figure 42). The single 

global group of 30 countries performs the worst (0.67 R2). Using the UN classifications, the network 

of the Developing countries trains very well, whereas the Developed countries generally train poorly 

with a wide range. The primary difference between the UN and IMF classifications, is the migration 

of Russia, Saudi Arabia, Turkey, Argentina and Poland from the Developed group, to the Emerging 

group (Table 4). Another reason the IMF rankings may perform so well is the reliance of financial-

related metrics as inputs into the network, meaning countries with similar financial statuses will 

likely have similar relationships between the variables for better generalisation. 

 

Figure 42: Different grouping types for the 30 countries, and the associated accuracy of the validation 

 

4.1.6 Structure of Networks 

In order to ensure that the network design was suitable, multiple designs were created, trained, 

validated for a selection of countries (China, USA, Russian Federation, India, Japan and the UK), and 

evaluated using the R2 method (Figure 43). 
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Figure 43: Performance of different ANN Architecture's prediction accuracy, using R2 as a metric. Selected design 
highlighted in orange 

 

As the number of neurons increases, so does the prediction accuracy, however the difference 

between the 8-5-1 setup, and the best performing architecture 8-7-1 is minimal (mean R2 of 0.84 

and 0.87 respectively). As such, the 8-5-1 network setup (Figure 19) was utilised, as there is risk that 

these minor improvements in the accuracy are achieved alongside overfitting. For simplicity, the 

grouped networks with 11 inputs, used the same intermediary architecture as the individual 

networks. While there may be some benefit to applying a similar parametric technique to the 

architecture design for the grouped networks, given the prediction capability of the 11-5-1 network, 

it was deemed acceptable to utilise. 

 

4.1.7 Grouped Network Convergence 

As seen in Figure 35 and Figure 36, the grouped networks tend to have a smaller spread of CEI 

changes, and there may be concern that the grouped networks are unifying the various countries to 

the same generalisation, so that in the long term, results converge towards the same CEI predictions. 
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Figure 44: Projections of CEI values for China, USA, Russia, India and Japan, for all SSPs up to 2100 

 

In order to test this, a selection of countries (China, USA, Russian Federation, India, Japan and the 

UK) were projected forward to 2100 with their respective Advanced and Emerging networks (Figure 

44). It can be seen that the network doesn’t converge, but rather the SSPs follow their own 

pathways, with increasing range in their distribution (although this may be related to increasing 

uncertainty such as in Figure 44). 

 

4.1.8 Comparison with Existing Projections 

Phase 6 of the Coupled Model Intercomparison Project (CMIP6) projected various GHG emissions for 

SSP1-5 in combination with Reference Concentration Pathways (RCPs) (O'Neill et al., 2016) for global 

CO2 atmospheric concentrations. The projections are summarised at different spatial scales; 

however, they do not reach the clarity for individual country predictions. Furthermore, it can be 

challenging to derive the same units found in the WDB as those that are given in the CMIP results. 

However, a proxy CEI (P-CEI) was derived (Figure 45): total CO2 emissions from the energy sector was 

divided by total energy demand for the world, for a number of SSP/RCP combinations. By their 

nature, the RCP targets are highly influential in CO2 emissions, however this derivation still provides 

some useful insights. For example, SSP3 generally leads to a high P-CEI, while SSP4 and SSP5 have 

ranges of possible outcomes, with the potential to reach low P-CEI. 
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Figure 45: Global projected CO2 emissions per Energy created  

 

It also demonstrates that a number of scenarios are capable of reaching negative P-CEI driven by 

negative emissions in the energy sector. It is well noted that a number of these scenarios rely on 

technologies such as carbon capture and storage/utilisation (CCS/U) or energy production such as 

bioenergy with CCS (BECCS). As the ANNs rely on historical data, it therefore means that it has not 

been exposed to innovative technologies such as CCS and cannot predict this integration (see 4.2.1 

Limitations and Future Work). As such, it is challenging to draw a direct comparison between P-CEI 

and CEI, as even with technologies such as BECCS, CO2 is still produced. 

Turning to other literature, other studies have found similar outcomes, with a continuous reliance on 

fossil fuels, even under SSP1. Van Vuuren et al. (2017) projected the global energy mix for SSP1-3 

(Figure 46). While SSP1 sees a reduction in CEI to 2100, it isn’t on the same scale as those predicted 

in CMIP due to the exclusion of CCS systems. They go on to identify in their study that CCS systems 

are critical to stabilising emissions and reaching reduction targets (van Vuuren et al., 2017). 
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Figure 46: Projections for energy usage and carbon intensity for SSP1-3 (van Vuuren et al., 2017) 

 

 

 Figure 47: (A) Energy demand projections and 
contributions from different sources up to 2100 for 
SSP1-5 and 3 RCPs. (B) The percentage contributions 
from fossil fuels for each scenario (shaded boxes 
represent range of possible scenarios) (Bauer et al., 
2017)  
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Similarly, Bauer et al. (2017) projected energy demand across multiple SSP/RCPs and the percentage 

contributions from fossil fuels (Figure 47). They found across all scenarios by 2050, fossil fuels still 

contribute at least 50% of total energy usage. By 2100, some scenarios under RCP2.6 get close to 

zero, however the baseline scenarios are still at or above 50% reliance on fossil fuels. Both of these 

studies highlight similar trends, a continuous reliance on fossil fuels, even into the period where 

CMIP6 projects negative CO2 emissions.  

 

4.1.9 Extended Projections 

The reductions in CEI across countries broadly show limited change over the next 30 years, and so 

the UK and India were projected forward to 2100 (Figure 48 and Figure 49 respectively), as the SSPs 

provide data for this extended range, and the remaining indicators can follow the same 

extrapolation pathways. Across the SSPs for both the Advanced and Emerging network, there is a 

downward trend in CEI in the latter half of the century, with the only exception being SSP3 for India. 

This is likely due to the regional rivalry where the emerging countries may stay heavily reliant on 

fossil fuels for extended periods, in comparison to the UK, where SSP3 is consistent, but begins to 

dips from 2060 onwards. 

 

 

Figure 48: Mean projected CEI for the UK using the grouped network up to 2100 
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Figure 49: Mean projected CEI for India using the grouped network up to 2100 

 

4.2  Limitations and Future Work 

4.2.1 Limitations of this Study 

As discussed, one of the main limitations of this study is the data availability. Although the WDB has 

indices tracking back to 1960, there were numerous gaps in the early years of the records, but also in 

the latest years too, resulting in the data having to be trimmed considerably. Although the data 

augmentation aided in achieving acceptable accuracy in some of the individual networks, it’s clear 

the grouped networks generally performed better, likely with the help of the added data available 

from aggregation of similar countries. 

Another limitation is the definition of CEI in this study, and its inability to model CCS systems. The 

CEI modelled here could be described as representing all CO2 created from the energy consumed, 

rather than the CO2 emitted directly to the atmosphere. It is one of the main drawbacks to machine 

learning models: there generally needs to be a precedent for the models to characterise, and so it 

can be challenging to model innovation and new technologies. As CCS technologies become 
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integrated into the energy production industries, it would then be valuable to revaluate the selected 

input variables. A conservative approach was selected for this study, where inputs were identified 

based on existing literature, however it is common in approaches to machine learning to start with 

an excess of variables, and prune to those which are most influential. This technique would be 

particularly useful for remodelling CEI in the coming years, in order to understand what variables 

could represent the impact of CCS, along with some of the political changes that could be influencing 

poor performance of some countries. 

 

4.2.2 Future Implications 

There are two key implications from this study. Firstly, it validates the use of ANN as a useful 

modelling technique within this context. As more data is captured over time and added to the 

training set, it will likely strengthen the prediction capability of the models. This will be particularly 

true for the introduction of CCS and other innovations, as this will give flexibility in what is being 

modelled, such as capability of modelling CO2 emissions into the atmosphere. It would also be 

valuable to investigate newer machine learning techniques such as random forest, as they may have 

performance benefits.  

It has also made clear the importance of carbon capture technologies. The results from this study 

and others (Bauer et al., 2017; van Vuuren et al., 2017) have demonstrated an underlying reliance on 

fossil fuels across all scenarios. Technologies such as CCS and other carbon sequestration techniques 

are therefore vital in reaching Net Zero. The IPCC has already illustrated the necessity of BECCS 

(IPCC, 2017) in minimising global temperature rise, and it is clear that even under the best scenarios, 

it is a challenge to move away from fossil fuels entirely.  
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5 | Conclusions 
 

In conclusion, the individually trained networks per country were generally surpassed in accuracy by 

the grouped networks, potentially due to the increased data available for training, although a 

number of individually trained networks performed adequately too. The countries that performed 

poorly with their individual networks, may have other external factors influencing the input data, 

such as experiencing revolutions (e.g. Egypt, Venezuela and Iran) that are not captured directly in 

the input data. 

When running the SSP1-5 projections, nearly all countries have changes in their CEI by 2050, 

however no country reaches a CEI of zero. The grouped networks projected scenarios had a 

narrower range of outcomes, in comparison to the individual networks, where there was more 

variety. On average, the Advanced countries see reductions across SSP1-5 in CEI, while the Emerging 

countries see increases in CEI across SSP1-5. For most countries SSP1 provides the best route to 

reducing CEI, whilst SSP4-5 provides opportunities for a selection of countries, particularly those 

classified as Advanced. However, the ongoing reliance on fossil fuels makes it clear that technologies 

such as CCS are vital to be able to limit CO2 emissions from future energy use.  
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6 | Auto-Critique 

This topic was chosen out of interest from my professional experience, speaking with colleagues and 

other members from the construction industry, there is a perceived gap between the science of 

climate change and more tangible targets and actions that they can undertake. At the time of 

formulating the research outline there was little previous research into the specifics of CEI, the 

paper by Acheampong and Boateng (2019) being the most relevant, and also very recent. It 

highlighted the opportunity to explore further, and expand into projecting CEI too.  

The training process resulted in models that had the capability to predict accurately, and also 

provided notable differences between the individual and grouped networks. Although the aims and 

objectives were fulfilled, there were many additional avenues that could have been explored. For 

example, studies previously had evaluated the sensitivity of different input variables in relation to 

CEI, and with a larger pool of countries in this study, some relationships and trends may have been 

identifiable.  

The selection of CEI itself can also be seen as restrictive, particularly when CEI can be used to 

describe electricity or energy intensity. If data was available for the former, it would be expected 

that CEI would reach zero, however as the WDB focused on all energy use, it accounts for the usage 

of fossil fuels for travel and industry, resulting in much higher values. However the overarching 

barrier to aligning results to the commonly spoken goal of Net Zero is the lack of CCS representation. 

In the coming decade, as CCS installations come online, datasets should start to represent this 

interaction, and how it would be possible to reach zero CEI. It is an inherent weakness of machine 

learning techniques, that are so reliant on historic data, and can struggle to adequaltely represent 

disruptive/innovative technologies. Another area of potential study is to have a broader approach to 

this problem, and see how different machine learning algorithms can approach projecting CEI. 

Finally, the limited variation in some of the SSP predictions for CEI could also be explained by the 

lack of data. The pruning required to ensure adequate coverage for training meant the latest year 

used was 2014. It could be argued that the past few years have been where the more significant 

steps have been made to limit climate change, which may not have been fully captured in the 

training process. If nothing else, the study has highlighted the usefulness of ANNs, but also warrants 

revisiting in the future, where more data is available, particularly for years where efforts to 

decarbonise our built environment could be better represented. 
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